Accounting for Multidimensionality in Item Responses in Patient-Centered and Patient Reported Outcomes Measurement
Main Article Content
Abstract
Article Details
References
Stewart M (2001): Towards a global definition of patient centred care. British Medical Journal 322, 444-445.
Hays, R. D., Morales, L. S., and Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care 38, 517-527.
The Health Foundation (2014). Helping measure person-centred care: Evidence review. http://www.health.org.uk/publications/helping-measure-person-centred-care
Reise, S. P., and Waller, N. G. (2009). Item response theory and clinical measurement. Annual Review of Clinical Psychology 5, 27-48.
Reise, S. P., Ainsworth, A. T., and Haviland, M. G. (2005). Item response theory: Fundamentals, applications, and promise in psychological research. Current Directions in Psychological Science 14, 95-101.
Reise, S.P. (2009). The emergence of item response theory models and the patient reported outcomes measurement information systems. Austrian Journal of Statistics 38, 211-220.
Stewart, A.L., & Ware, J.E. (1992). Measuring functioning and well-being: The medical outcomes study approach. Durham, NC: Duke University Press.
Mezzich J E, Kirisci L, Salloum I. (2011). INPCM-WHO Project on Developing Measures to Assess Progress Towards people-centered Care. Technical Report. International College of Person Centered Medicine, New York.
Reise, S.P., Moore, T.M., & Haviland, M.G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment 92, 544-559.
Cronbach, L.J. (1946). Response sets and test validity. Educational and Psychological Measurement 6, 475-494.
Zumbo, B.D. (2007). Three generations of DIF analyses: Considering where it has been, where it is now, and where it is going. Language Assessment Quarterly 4, 223-233.
Paulhus, D. L. (1991). Measurement and control of response bias. In: J. P. Robinson, P. R. Shaver, & L. S. Wrightsman (Eds.), Measures of Personality and Social Psychological Attitudes (pp. 17-59). San Diego, CA: Academic Press.
De Beuckelaer, A., Weijters, B., & Rutten, A. (2010). Using ad hoc measures for response styles. A cautionary note. Quality & Quantity 44, 761-775.
Meisenberg, G., & Williams, A. (2008). Are acquiescent and extreme response styles related to low intelligence and education? Personality and Individual Differences 44, 1539-1550.
Meiser, T., & Machunsky, M. (2008). The personal structure of personal need for structure: A mixture-distribution Rasch analysis. European Journal of Psychological Assessment 24, 27-34.
De Jong, M. G., Steenkamp, J.-B. E. M., Fox, J.-P., & Baumgartner, H. (2008). Using item response theory to measure extreme response style in marketing research: A global investigation. Journal of Marketing Research 45, 104-115.
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Lawrence Erlbaum Associates.
Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: principles and applications. Boston, MA: Kluwer-Nijhoff.
Reeve, B. B. 2002. An introduction to modern measurement theory. National Cancer Institute. Retrieved from http://appliedresearch.cancer.gov/archive/cognitive/immt.pdf.
Yen, W. M. & Fitzpatrick, A. R. (2006). Item response theory. In R. L. Brennan (Ed.), Educational measurement (4th ed.). Westport, CT: American Council on Education/Praeger.
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph (No. 17).
Samejima, F. (Ed.). (1996). The graded response model. New York: Springer. In van der Linden, W.J. and Hambleton, R.K. (1996). Handbook of Modern Item Response Theory. New York: Springer-Verlag.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika 47, 149-174.
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika 43, 561-573.
Reckase, M. D. (1997). The past and future of multidimensional item response theory. Applied Psychological Measurement 21, 25-36.
Wang, X., Bradlow, E. T., & Wainer, H. (2002). A general Bayesian model for testlets: Theory and applications. Applied Psychological Measurement 26, 109-128.
DeMars, C. E. (2013). A tutorial on interpreting bifactor model scores. International Journal of Testing 13, 354-378.
Gibbons, R.D., & Hedeker, D. R. (1992). Full-information item bi-factor analysis. Psychometrika 57, 423-436.
Gibbons, R. D., Immekus, J. C., & Bock, R. D. (2007). The added value of multidimensional IRT models. Downloaded from http://www.healthstats.org/articles/NCI_Didactic_Workbook.pdf.
Li, Y., Bolt, D.M., & Fu, J. (2006). A comparison of alternative models for testlets. Applied Psychological Measurement 30, 3-21.
Haberman, S. J. (2008). When can subscores have value? Journal of Educational and Behavioral Statistics 33, 204–229.
Sinharay, S. & Haberman, S. J. (2014). How often is the misfit of item response theory models practically significant? Educational Measurement: Issues and Practice, 33, 2335.
Feinberg, R.A. & Wainer, H. (2014). A simple equation to predict a subscore's value. Educational Measurement: Issues and Practice 33, 55-56.
Chen , F.F., West, S.G. & Sousa, K.H. (2006) A Comparison of Bifactor and Second-Order Models of Quality of Life. Multivariate Behavioral Research 41, 189-225.
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika 37, 29-51.
Bolt, D. M., & Johnson, T. R. (2009). Addressing score bias and differential item functioning due to individual differences in response style. Applied Psychological Measurement 33, 335–352.
Johnson, T. R., & Bolt, D. M. (2010). On the use of factor-analytic multinomial logit item response models to account for individual differences in response style. Journal of Educational and Behavioral Statistics 35, 92-114.
Bolt, D. M., & Newton, J. R. (2011). Multiscale measurement of extreme response style. Educational and Psychological Measurement 71, 814–833.
Böckenholt, U. (2012). Modeling multiple response processes in judgment and choice. Psychological Methods 17, 665-678.
Thissen-Roe, A., & Thissen, D. (2013) A two-decision model for responses to Likert-type items. Journal of Educational and Behavioral Statistics 38, 522-547.
Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2001). A mixture item response model for multiple-choice data. Journal of Educational and Behavioral Statistics 26, 381-409.
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement 14, 271-282.
Sawatzky, R., Ratner, P.A., Kopec, J.A., & Zumbo, B.D. (2012). Latent variable mixture models: A promising approach for the validation of patient reported outcomes. Quality of Life Research 21, 637-650.
Vermunt, J. K., & Magidson, J. (2006). Latent GOLD 4.0 and IRT modeling. Retrieved February 13, 2009, from http://www.statisticalinnovations.com/products/LGIRT.pdf
Muthén, L.K. & Muthén, B.O. (2012). Mplus user’s guide. Seventh Edition. Los Angeles, CA: Muthén & Muthén.
Cai, L., Thissen, D., & du Toit, S. H. C. (2011). IRTPRO for Windows [Computer software]. Lincolnwood, IL: Scientific Software International.
Congdon, P. (2006). Bayesian Statistical Modelling. 2nd ed. Chichester: Wiley.
Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. New York: Springer.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D.B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis. 3rd ed. Boca Raton: CRC Press.
Lunn, D, Jackson, C, Best, N, Thomas, A, Spiegelhalter D (2013). The BUGS book: A practical introduction to Bayesian analysis. New York: CRC Press.
Spiegelhalter, D. J., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS User Manual Version 1.4 [Computer software manual]. Cambridge, UK: MRC Biostatistics Unit.
SAS Institute (2014). SAS/STAT 13.2 User’s Guide. Chapter 61, The MCMC Procedure. Cary, NC: SAS Institute Inc. Retrieved from: http://support.sas.com/documentation/onlinedoc/stat/132/mcmc.pdf
Stone, C.A. & Zhu, X. (2015). Bayesian analysis of item response theory models using SAS. Cary, NC: SAS Institute Inc.
Spiegelhalter, D. J., Best, N., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64(4), 583-639.
Sinharay, S. (2006). Bayesian item fit analysis for unidimensional item response theory models. British Journal of Mathematical and Statistical Psychology 59, 429-449.
Sinharay, S., Johnson, M. S., & Stern, H. S. (2006). Posterior predictive assessment of item response theory models. Applied Psychological Measurement 30, 298-321.
Zhu, X., & Stone, C.A. (2011). Assessing fit of unidimensional graded response models using Bayesian methods. Journal of Educational Measurement 48, 81-97.
Zhu, X., & Stone, C.A. (2012). Bayesian comparison of alternative graded response models for performance assessment applications. Educational and Psychological Measurement 72, 774-799.
Li, Y. & Baser, R. (2012). Using R and WinBUGS to fit a generalized partial credit model for developing and evaluating patient-reported outcomes assessment. Statistics in Medicine 31, 2010-2026.